Measuring Convexity via Convex Polygons
نویسندگان
چکیده
This paper describes a general approach to compute a family of convexity measures. Inspired by the use of geometric primitives (such as circles) which are often fitted to shapes to approximate them, we use convex polygons for this task. Convex polygons can be generated in many ways, and several are demonstrated here. These polygons are scaled and translated to ensure that they fit the input shape and produce a meaningful convexity measure. Subsequently, a convexity measure can be computed based on the degree of overlap between the two shapes.
منابع مشابه
Constant-Time Convexity Problems on Reconfigurable Meshes
The purpose of this paper is to demonstrate that the versatility of the reconngurable mesh can be exploited to devise constant-time algorithms for a number of important computational tasks relevant to robotics, computer graphics, image processing, and computer vision. In all our algorithms, we assume that one or two n-vertex (convex) polygons are pretiled, one vertex per processor, onto a recon...
متن کاملThree-dimensional strong convexity and visibility
We define the notions of strong convexity and strong visibility. These notions generalize standard convexity and visibility, as well as several types of nontraditional convexity, such as iso-oriented rectangles and C-oriented polygons. We explore the properties of strong convexity and strong visibility in two and three dimensions. In particular, we establish analogs of the following properties ...
متن کاملMoving Cast Shadow Detection Using Joint Color and Texture Features with Neighboring Information
1. Ryszard Kozera and Lyle Noakes. Optimal Knots Selection for Sparse Reduced Data 2. Bingshu Wang at al. Moving Cast Shadow Detection using Joint Color and Texture Features with Neighboring Information 3. Leszek J Chmielewski et al. Detection of surface defects of type `orange skin' in furniture elements with conventional image processing methods 4. Paul L. Rosin and Jovisa Zunic Measuring Con...
متن کاملConvexity of Sub-polygons of Convex Polygons
A convex polygon is defined as a sequence (V0, . . . , Vn−1) of points on a plane such that the union of the edges [V0, V1], . . . , [Vn−2, Vn−1], [Vn−1, V0] coincides with the boundary of the convex hull of the set of vertices {V0, . . . , Vn−1}. It is proved that all sub-polygons of any convex polygon with distinct vertices are convex. It is also proved that, if all sub-(n − 1)-gons of an n-g...
متن کاملOn k-convex polygons
We introduce a notion of k-convexity and explore polygons in the plane that have this property. Polygons which are k-convex can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of 2-convex polygons, a particularly interesting class, and show how to recognize them in O(n log n) time. A description of their sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015